Low voltage activated calcium channels: from genes to function.

نویسندگان

  • L Lacinová
  • N Klugbauer
  • F Hofmann
چکیده

Cloning of three members of low-voltage-activated (LVA) calcium channel family, predominantly neuronal alpha1G and alpha1I, and ubiquitous alpha1H, enabled to investigate directly their electrophysiological and pharmacological profile as well as their putative subunit composition. All the three channels are half-activated at membrane potential about -40 mV and half-inactivated at about -70 mV. Kinetics of alpha1G and alpha1H channels activation and inactivation are similar and faster than that of alpha1I channel. All the three channels are blocked with high affinity by the organic blocker mibefradil. Another high affinity blocker is kurtoxin. Cloned LVA channels are relatively insensitive to antiepileptics, dihydropyridines and omega-conotoxins. Ni2+ is high affinity blocker of alpha1H channel only. Amiloride inhibits the alpha1H channel. The subunit composition of LVA channel remains unclear. Out of known high-voltage-activated calcium channel subunits, alpha2delta-2 and gamma-5 subunits significantly and systematically modified activation and/or inactivation of the current. In contrast, alpha2delta-1, alpha2delta-3, gamma-2 and gamma-4 subunits failed to modulate the current or had only minor effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

L-type calcium channels: highs and new lows.

Voltage-gated calcium channels are essential for coupling membrane depolarization to the influx of calcium in all excitable cells. The calcium that flows into excitable cells through voltage-gated calcium channels serves a dual function, generating both electrical and chemical signals. The intracellular events controlled by calcium are diverse and many. Excitable cells can select from a number ...

متن کامل

Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons.

Calcium influx through voltage-gated Ca2+ channels plays an important role in neuronal function. In a thin-slice preparation of neonatal rat hypoglossal motoneurons (HMs) we recorded Ba2+ currents through voltage-gated Ca2+ channels using the whole-cell configuration of the patch-clamp technique. We found that HMs have low-voltage-activated (LVA) and at least three types of high-voltage-activat...

متن کامل

Voltage-gated N-type and T-type Calcium Channels and Excitability Disorders

Calcium (Ca2þ) is a ubiquitous signaling molecule involved in a diverse array of cellular processes ranging from control of membrane excitability to gene transcription, all of which require that intracellular levels be tightly regulated. In particular, voltage-gated Ca2þ channels (Cav) regulate transmembrane fluxes of calcium in response to membrane depolarization. Ca2þ currents can generally b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • General physiology and biophysics

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2000